원문정보
Sentiment Analysis for Public Opinion in the Social Network Service
초록
영어
As an application of big data and artificial intelligence techniques, this study proposes an atypical language-based sentimental opinion poll methodology, unlike conventional opinion poll methodology. An alternative method for the sentimental classification model based on existing statistical analysis was to collect real-time Twitter data related to parliamentary elections and perform empirical analyses on the Polarity and Intensity of public opinion using attribute-based sensitivity analysis. In order to classify the polarity of words used on individual SNS, the polarity of the new Twitter data was estimated using the learned Lasso and Ridge regression models while extracting independent variables that greatly affect the polarity variables. A social network analysis of the relationships of people with friends on SNS suggested a way to identify peer group sensitivity. Based on what voters expressed on social media, political opinion sensitivity analysis was used to predict party approval rating and measure the accuracy of the predictive model polarity analysis, confirming the applicability of the sensitivity analysis methodology in the political field.
한국어
본 연구는 소셜네트워크서비스(SNS)상의 빅데이터를 이용한 텍스트 분석기법의 응용으로서 설문 조사 기반의 여론 조사 방법론과 달리 비정형적 언어 기반의 감성 여론 조사 방법론을 제안한다. 기존의 설문 기반 여론 분석모형 에 대한 대안적 방법으로 주관성에 기초한 감성 분류 모형을 이용하였다. 이를 위하여, 제20대 국회의원 선거운동 기 간 중 선거 관련 실시간 트위터 자료를 수집하여 속성 기반 감성 분석을 이용한 여론의 극성과 강도에 대한 실증 분 석을 수행하였다. 개별 SNS에서 사용된 단어의 극성을 분류하기 위해 Lasso 및 Ridge 회귀 모형을 이용하여 극성 에 영향력이 큰 변수를 추출하였다. 추출된 변수가 극성에 미치는 긍정 및 부정에 대한 영향을 구분하고, 영향력의 강도를 분석하였다. 대중들이 소셜네트워크상에서 표현한 내용을 바탕으로 한 여론에 대한 긍정 및 부정의 감성 분석 을 통해 여론의 향방을 예측하고 극성분석 모형의 정확도를 측정하여, 여론 조사 분야에서 감성 분석 방법론의 적용 가능성을 확인하였다.
목차
Abstract
Ⅰ. 서론
Ⅱ. 감성 분석 이론
Ⅲ. 여론 감성 분석모형
1. 연구 모형 설계
2. 자료 수집 및 전처리 과정
Ⅳ. 실험 및 결과
1. 감성 표현 극성 분포
2. 여론 감성 분석모형 정확도
3. 극성 영향 단어 분석결과
Ⅴ. 결론
References