원문정보
Transfer Learning-based Object Detection Algorithm Using YOLO Network
초록
영어
To guarantee AI model’s prominent recognition rate and recognition precision, obtaining the large number of data is essential. In this paper, we propose transfer learning-based object detection algorithm for maintaining outstanding performance even when the volume of training data is small. Also, we proposed a tranfer learning network combining Resnet-50 and YOLO(You Only Look Once) network. The transfer learning network uses the Leeds Sports Pose dataset to train the network that detects the person who occupies the largest part of each images. Simulation results yield to detection rate as 84% and detection precision as 97%.
한국어
딥 러닝 기반 객체 탐지 및 영상처리 분야에서 모델의 인식률과 정확도를 보장하기 위해 다량의 데이터 확보는 필수적이다. 본 논문에서는 학습데이터가 적은 경우에도 인공지능 모델의 높은 성능을 도출하기 위해 전이학습 기반 객 체탐지 알고리즘을 제안한다. 본 논문에서는 객체탐지를 위해 사전 학습된 Resnet-50 네트워크와 YOLO(You Only Look Once) 네트워크를 결합한 전이학습 네트워크를 구성하였다. 구성된 전이학습 네트워크는 Leeds Sports Pose 데이터셋의 일부를 활용하여 이미지에서 가장 넓은 영역을 차지하고 있는 사람을 탐지하는 네트워크로 학습을 진행하였 다. 실험결과는 탐지율 84%, 탐지 정확도 97%를 기록하였다.
목차
Abstract
Ⅰ. 서론
Ⅱ. 딥 러닝 알고리즘
1. 전이 학습
2. 전이학습 네트워크
Ⅲ. 실험 환경 및 결과
1. 실험 데이터
2. 실험 환경
3. 실험 결과
Ⅳ. 결론
References