earticle

논문검색

On Practical Issue of Non-Orthogonal Multiple Access for 5G Mobile Communication

초록

영어

The fifth generation (5G) mobile communication has an impact on the human life over the whole world, nowadays, through the artificial intelligence (AI) and the internet of things (IoT). The low latency of the 5G new radio (NR) access is implemented by the state-of-the art technologies, such as non-orthogonal multiple access (NOMA). This paper investigates a practical issue that in NOMA, for the practical channel models, such as fading channel environments, the successive interference cancellation (SIC) should be performed on the stronger channel users with low power allocation. Only if the SIC is performed on the user with the stronger channel gain, NOMA performs better than orthogonal multiple access (OMA). Otherwise, NOMA performs worse than OMA. Such the superiority requirement can be easily implemented for the channel being static or slow varying, compared to the block interval time. However, most mobile channels experience fading. And symbol by symbol channel estimations and in turn each symbol time, selections of the SIC-performing user look infeasible in the practical environments. Then practically the block of symbols uses the single channel estimation, which is obtained by the training sequence at the head of the block. In this case, not all the symbol times the SIC is performed on the stronger channel user. Sometimes, we do perform the SIC on the weaker channel user; such cases, NOMA performs worse than OMA. Thus, we can say that by what percent NOMA is better than OMA. This paper calculates analytically the percentage by which NOMA performs better than OMA in the practical mobile communication systems. We show analytically that the percentage for NOMA being better than OMA is only the function of the ratio of the stronger channel gain variance to weaker. In result, not always, but almost time, NOMA could perform better than OMA.

목차

Abstract
1. Introduction
1.1 Our Contribution Summary
2. System and Channel Model
3. Probability Derivation
4. Results and Discussions
4.1 Main Contribution
5. Conclusion
References

저자정보

  • Kyuhyuk Chung Professor, Department of Software Science, Dankook University, Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.