earticle

논문검색

경영

Exploring the Sentiment Analysis of Electric Vehicles Social Media Data by Using Feature Selection Methods

원문정보

속성선택방법을 이용한 전기자동차 소셜미디어 데이터의 감성분석 연구

Francis Joseph Costello, Kun Chang Lee

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

This study presents a recently obtained social media data set based upon the case study of Electric Vehicles (EV) and looks to implement a sentiment analysis (SA) in order to gain insights. This study uses two methods in order to fully analyze the public’s sentiment on EVs. First, we implement a SA tool in which we used to extract the sentiment of comments. Next we labeled the data with these sentiments obtained and classified them. While performing classification we found the problem of dimensionality and also explored the use of feature selection (FS) models in order to reduce the data set’s dimensionality. We found that the use of three FS models (Chi Squared, Information Gain and ReliefF) showed the most promising results when used alongside a logistic and support vector machines classification algorithm. the contributions of this paper are in providing an real-world example of social media text analytics which can be adopted in many other areas of research and business. Moving forward researchers can use the methodological approach in this paper to further refine and improve their own case uses in text analytics.

한국어

본 연구는 전기자동차(EV)에 대한 소셜미디어 데이터를 기반으로 감성분석 (SA)과 속성선택 (FS)방법을 적용하 여 전기자동차에 대한 일반 사람들의 의견을 보다 효과적이고 정확히 예측할 수 있는 새로운 방법론을 제안한다. 구체 적인 방법은 다음과 같다. 첫째, 유튜브에 있는 전기자동차에 대한 일반 사람들의 의견을 추출하였다. 둘째, 분석의 효과성을 증대하기 위하여 카이 스퀘어, 정보획득량, 릴리프에프 등 세가지 속성선택 방법을 적용하였다. 그 결과 로지 스틱 회귀분석 및 서포트 벡터 머신 분류 기법에서 가장 의미있는 결과를 얻을 수 있다는 것이 확인되었다.

목차

Abstract
요약
1. Introduction
2. Related Work
2.1 Text Mining in Social Media
2.2 Sentiment Analysis Within Text Mining
2.3 Classification & Dimensionality
2.4 Case Study: Electric Vehicles (EV)
3. Methodology
3.1 Stage 1: Sentiment Analysis
3.2 Stage 2: Classification and FS
3.3 Methods of Analysis
3.4 Justification of Research Methodology
4. Results
5. Conclusion
5.1 Key Findings
5.2 Key Implications
5.3 Limitations and Future Recommendations
REFERENCES

저자정보

  • Francis Joseph Costello PhD Student, SKK Business School, Sungkyunkwan University
  • Kun Chang Lee 이건창. Professor, Global Business Administration/Dept of Health Sciences & Technology, SAIHST (Samsung Advanced Institute for Health Sciences & Technology) Sungkyunkwan University

참고문헌

    ※ 기관로그인 시 무료 이용이 가능합니다.

    • 4,200원

    0개의 논문이 장바구니에 담겼습니다.