earticle

논문검색

논문

컨볼루션 뉴럴 네트워크를 이용한 군중 행동 감지

원문정보

Crowd Behavior Detection using Convolutional Neural Network

와셈 울라, 파트 우 민 울라, 백성욱, 이미영

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

The automatic monitoring and detection of crowd behavior in the surveillance videos has obtained significant attention in the field of computer vision due to its vast applications such as security, safety and protection of assets etc. Also, the field of crowd analysis is growing upwards in the research community. For this purpose, it is very necessary to detect and analyze the crowd behavior. In this paper, we proposed a deep learning-based method which detects abnormal activities in surveillance cameras installed in a smart city. A fine-tuned VGG-16 model is trained on publicly available benchmark crowd dataset and is tested on real-time streaming. The CCTV camera captures the video stream, when abnormal activity is detected, an alert is generated and is sent to the nearest police station to take immediate action before further loss. We experimentally have proven that the proposed method outperforms over the existing state-of-the-art techniques.

한국어

감시 영상에서 군중 행동의 자동 모니터링 및 감지는 보안, 안전 및 자산 보호와 같은 방대한 응용 프로그램으로 인 해 컴퓨터 비전 분야에서 중요한 관심을 받고 있다. 또한 연구 커뮤니티에서 군중 분석 분야가 점차 증가하고 있다. 이를 위해서는 군중들의 행동을 감지하고 분석하는 것이 매우 필요하다. 본 논문에서는 스마트 시티에 설치된 감시 카메라의 비정상적인 활동을 감지하는 딥러닝 기반 방법을 제안하였다. 미세 조정된 VGG-16모델은 트레이닝된 공 개적으로 사용 가능한 벤치마크 군중 데이터 셋을 실시간 스트리밍으로 테스트한다. CCTV카메라는 비디오 스트림 을 캡쳐하는데, 비정상적인 활동이 감지되면 경보가 발생하여 추가 손실 전에 즉각적인 조치가 이루어지도록 가장 가까운 경찰서로 전송된다. 우리는 제안된 방법이 기존의 첨단 기술 보다 성능이 뛰어남을 실험으로 입증하였다.

목차

요약
Abstract
1. Introduction
2. Proposed Method
2.1 Feature Extraction
3. Experimental results
3.1 Datasets
3.2 Comparative analysis
4. Conclusion
참고문헌

저자정보

  • 와셈 울라 Waseem Ullah. 세종대학교
  • 파트 우 민 울라 Fath U Min Ullah. 세종대학교
  • 백성욱 Sung Wook Baik. 세종대학교
  • 이미영 Mi Young Lee. 세종대학교

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      0개의 논문이 장바구니에 담겼습니다.