원문정보
초록
영어
If it takes much time to calculate the fitness of the solution in genetic algorithms, it is essential to create a metamodel. Much research has been completed to improve the performance of metamodels. In this study, we tried to get a better performance of metamotel using discrete Walsh transform in discrete domain. We transforms the basis of the solution and creates a metamodel using the transformed solution. We experimented with NK-landscape, a representative function of the pseudo-boolean function, and provided empirical evidence on the performance of the proposed model. When we performed the genetic algorithm using the proposed model, we confirmed that the genetic algorithm found a better solution. In particular, our metamodel showed better performance than that using the radial basis function network that modified the similarity function for the discrete domain.
한국어
유전 알고리즘에서 해의 적합도를 계산하는 시간이 오래 걸린다면 메타모델을 만드는 것은 필수적이다. 이에 메타모델의 성능을 높여 유전 알고리즘이 더 좋을 해를 찾게 하기 위한 연구가 진행되어 왔다. 본 연구에서 우리는 이산 적인 도메인에서 이산 월시 변환을 사용해 메타모텔의 성능을 높이고자 하였다. 이산 월시 변환을 통해 해의 기저를 변환했고 변환된 해를 사용해 메타모델을 만들었다. 의사-불리언 함수의 대표적인 함수인 NK 모형을 대상으로 실험했 고 제안된 모델의 성능에 대한 실증적인 증거를 제공했다. 제안된 모델을 사용해 유전 알고리즘을 수행했을 때, 유전알 고리즘이 더 좋은 해를 찾음을 확인했다. 특히, 선행 연구인 유사도 함수를 이산적인 도메인에 적합하게 수정한 방사기 저 함수 네트워크보다 좋은 성능을 보였다.
목차
Abstract
1. 서론
2. 이론적 배경
2.1 메타모델
2.2 이산 월시 변환
3. 실험 분석 및 결과
3.1 실험 설정 및 방법론
3.2 근사 오차 비교
3.3 GA 성능 비교
4. 결론 및 향후 연구
REFERENCES