원문정보
Social Issue Analysis Based on Sentiment of Twitter Users
초록
영어
Recently, social network service (SNS) is actively used by public. Among them, Twitter has a lot of tweets including sentiment and it is convenient to collect data through open Aplication Programming Interface (API). In this paper, we analyze social issues and suggest the possibility of using them in marketing through sentimental information of users. In this paper, we collect twitter text about social issues and classify as positive or negative by sentiment classifier to provide qualitative analysis. We provide a quantitative analysis by analyzing the correlation between the number of like and retweet of each tweet. As a result of the qualitative analysis, we suggest solutions to attract the interest of the public or consumers. As a result of the quantitative analysis, we conclude that the positive tweet should be brief to attract the users' attention on the Twitter. As future work, we will continue to analyze various social issues.
한국어
대중들의 소통의 창구로 자리매김 하고 있는 소셜 네트워크 서비스(SNS)에 작성된 글은 감성을 많이 포함 하고 있다는 특징을 갖고 있다. 그 중 트위터는 공개 Application Programming Interface(API)를 통한 데이터 의 수집이 편리하다는 장점을 지니고 있다. 본 논문에서는 트위터 상에 표현된 사용자들의 감성 정보를 통해 사회 적 이슈를 분석하고 마케팅 분야 활용 가능성을 제시한다. 이는 국민 또는 소비자의 의견과 반응을 필요로 하는 정부, 기업 등에 도움이 될 수 있다. 본 논문에서는 최근 사회적 이슈에 대한 트위터 텍스트 데이터를 긍정 또는 부정으로 분류하여 질적 분석을 제공하였고, 각 트윗의 좋아요 수, 리트윗 수 등에 대한 상관관계 분석을 통해 양적 분석을 제공하였다. 질적 분석의 결과로 국민의 지지를 얻기 위해 관세정책을 홍보하고, 버즈 사용자에게는 기술적 편의를 제공할 것을 제안하였다. 양적 분석의 결과, 트위터 사용자들의 관심을 끌기 위해서는 긍정적인 트윗을 짧 고 간단하게 작성해야 함을 밝혔다. 데이터의 수집 기간이 짧고, 단 두 가지의 키워드만을 분석하여 일반화 가능성 이 떨어지는 한계를 가져 향후, 보다 긴 기간의 다양한 사회적 이슈를 분석할 예정이다.
목차
Abstract
1. 서론
2. 이론적 배경
2.1 트위터 분석
2.2 감성 분류 모델
3. 연구 모형 및 가설
3.1 데이터 수집 및 전처리
3.2 감성 분류
3.3 시각화 및 수치적 해석
4. 연구 결과
4.1 시각화
4.2 수치적 해석
5. 결론
REFERENCES
