원문정보
Feature selection and Classification of Heart attack Using NEWFM of Neural Network
초록
영어
Recently heart attack is 80% of the sudden death of elderly. The causes of a heart attack are complex and sudden, and it is difficult to predict the onset even if prevention or medical examination is performed. Therefore, early diagnosis and proper treatment are the most important. In this paper, we show the accuracy of normal and abnormal classification with neural network using weighted fuzzy function for accurate and rapid diagnosis of myocardial infarction. The data used in the experiment was data from the UCI Machine Learning Repository, which consists of 14 features and 303 sample data. The algorithm for feature selection uses the average of weight method. Two features were selected and removed. Heart attack was classified into normal and abnormal(1-normal, 2-abnormal) using the average of weight method. The test result for the diagnosis of heart attack using a weighted fuzzy neural network showed 87.66% accuracy.
한국어
최근 심근경색은 중장년층의 돌연사의 80%로 밝혀졌다. 심근경색의 발병 원인은 복합적이고 갑자기 발생하게 되어 예방이나 건강검진을 하더라도 발병을 예측하기 어렵다. 따라서 빠른 진단과 적절한 치료가 가장 중요하다. 이 논문 에서는 심근경색에 대한 정확하고 빠른 진단을 위해 가중퍼지소속함수를 이용한 신경망으로 정상과 비정상 분류에 대한 정확도를 나타내었다. 실험에 사용된 데이터는 14개의 특징과 303개의 샘플 데이터로 이루어진 UCI Machine Learning Repository에서 제공하는 데이터 사용하였다. 2개의 특징을 선택하여 제거하였다. 특징선택을 위한 알고리즘 은 average of weight method를 사용하였다. 가중퍼지소속함수를 이용하여 심근경색을 정상과 비정상으로 분류 (1-nomal, 2-abnormal)하였다. 실험 결과 정확도가 87.66%가 나왔다.
목차
Abstract
Ⅰ. 서론
Ⅱ. 가중퍼지소속함수(Neural Network Weighted Fuzzy Mumbership Function(NEWFM)
Ⅲ. 실험 및 평가
Ⅳ. 결론
References