earticle

논문검색

엔터테인먼트

연관규칙을 이용한 상황인식 음악 추천 시스템

원문정보

A Music Recommendation System based on Context-awareness using Association Rules

오재택, 이상용

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Recently, the recommendation system has attracted the attention of users as customized recommendation services have been provided focusing on fashion, video and music. But these services are difficult to provide users with proper service according to many different contexts because they do not use contextual information emerging in real time. When applied contextual information expands dimensions, it also increases data sparsity and makes it impossible to recommend proper music for users. Trying to solve these problems, our study proposed a music recommendation system to recommend proper music in real time by applying association rules and using relationships and rules about the current location and time information of users. The accuracy of the recommendation system was measured according to location and time information through 5-fold cross validation. As a result, it was found that the accuracy of the recommendation system was improved as contextual information accumulated.

한국어

최근 추천 시스템은 패션, 동영상, 음악 등을 중심으로 맞춤형 추천 서비스가 제공되어 사용자들의 관심을 모으 고 있다. 그러나 이러한 서비스들은 실시간으로 발생하는 상황 정보를 사용하지 않아 여러 상황에 따른 적합한 서비스를 사용자에게 제공하기가 어렵다. 또한 적용되는 상황 정보가 차원을 확장시킬 경우, 데이터 희소성(Data Sparsity)을 증가시켜 사용자들에게 적합한 음악들을 추천할 수 없는 문제가 발생한다. 본 연구에서는 이러한 문제점을 해소시키기 위해 연관규칙(Association Rules)을 적용하여 사용자의 현재 위치 정보와 시간 정보에 대한 관계성 및 규칙들을 이용 하여 실시간 상황에서 적합한 음악을 추천하는 시스템을 제안하였다. 수집된 상황 정보를 바탕으로 5-fold Cross Validation을 진행하여 위치와 시간 정보에 따른 추천 시스템의 정확도를 측정하였다. 그 결과 상황 정보가 누적됨에 따라 추천 시스템의 정확도가 향상되는 것을 확인할 수 있었다.

목차

요약
Abstract
1. 서론
2. 관련연구
2.1 상황인식 추천 시스템
2.2 연관규칙 분석
3. 시스템 설계
4. 시스템 구현
5. 실험 및 평가
6. 결론
REFERENCES

저자정보

  • 오재택 Jae-Taek Oh. 공주대학교 컴퓨터공학과 박사과정
  • 이상용 Sang-Yong Lee. 공주대학교 컴퓨터공학부 교수

참고문헌

자료제공 : 네이버학술정보

    ※ 기관로그인 시 무료 이용이 가능합니다.

    • 4,000원

    0개의 논문이 장바구니에 담겼습니다.