원문정보
초록
영어
This study confirms the polarity of news articles on apartment prices using Opinion Mining which has widely been used for a big data analysis. The analyses were carried out utilizing internet news articles posted on the Naver for two years: 2012 and 2018. We proposed a sentiment analysis model and modeled a topic-oriented sentiment dictionary construction methods. As a result of analyzing the proposed sentiment analysis model, it was confirmed that there was a difference according to the tendency of the media companies in selecting social issues at the time of rising apartment prices. At the same time, we were able to find more affirmative articles in the media companies which share similar sentiment with the government in charge. In this paper, we proposed a sentiment analysis model that can be used in real estate field and analyzed the polarity of unformatted data related to real estate. In order to integrate them into various fields in the future, it is necessary to build the sentiment dictionaries by themes, as well as to collect various unformatted data over extended periods.
한국어
본 연구는 빅데이터 분석 방법인 오피니언 마이닝을 사용하여 아파트 가격 관련 뉴스 기사의 극성을 확인하는 연구로 자료는 2012년, 2018년 2년간 네이버에 게시된 인터넷 뉴스 기사를 사용하였다. 감성분석 모형을 모델링하고 주제 지향형 감성사전 구축 방법을 제안하였다. 제안한 감성분석 모형을 통해 분석한 결과, 아파트 가격이 상승하는 시기에는 사회적 이슈 선정에 있어서 언론사의 성향에 따라 차이가 있는 것을 확인하였고 정부와 동일한 성향의 언론사 에서 긍정 기사가 많은 것을 확인하였다. 부동산 분야에서 사용할 수 있는 감성분석 모형을 제시하고 부동산 관련 비정 형 데이터의 극성을 분석하였다는 것에 의의가 있다. 향후 다양한 분야에 접목하기 위해서는 주제별 감성사전을 구축해 야 하며 다양한 비정형 데이터를 수집하고 수집 기간을 확장하는 것이 필요하다.
목차
Abstract
1. 서론
1.1 연구의 배경 및 필요성
1.2 연구의 목적 및 내용
2. 선행연구 고찰
2.1 오피니언 마이닝에 관한 연구
3. 감성분석 모형
3.1 감성분석 모형 구조
3.2 주제 지향 감성사전 구축
4. 실증 분석
5. 결론
REFERENCES
