earticle

논문검색

ITS기술

심층인공신경망(DNN)과 다각도 상황 정보 기반의 서울시 도로 링크별 교통 혼잡도 예측

원문정보

Prediction of Traffic Congestion in Seoul by Deep Neural Network

김동현, 황기연, 윤영

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Various studies have been conducted to solve traffic congestions in many metropolitan cities through accurate traffic flow prediction. Most studies are based on the assumption that past traffic patterns repeat in the future. Models based on such an assumption fall short in case irregular traffic patterns abruptly occur. Instead, the approaches such as predicting traffic pattern through big data analytics and artificial intelligence have emerged. Specifically, deep learning algorithms such as RNN have been prevalent for tackling the problems of predicting temporal traffic flow as a time series. However, these algorithms do not perform well in terms of long-term prediction. In this paper, we take into account various external factors that may affect the traffic flows. We model the correlation between the multi-dimensional context information with temporal traffic speed pattern using deep neural networks. Our model trained with the traffic data from TOPIS system by Seoul, Korea can predict traffic speed on a specific date with the accuracy reaching nearly 90%. We expect that the accuracy can be improved further by taking into account additional factors such as accidents and constructions for the prediction.

한국어

여러 대도시에서 교통 혼잡 문제를 해결하기 위해 정확한 교통 흐름을 예측하는 다양한 연 구가 진행되었다. 대부분의 연구가 과거의 교통 흐름 패턴이 미래에도 반복될 것이라는 가정 하에 예측 모델을 개발하였으나 교통사고 등과 같은 뜻하지 않은 비반복적 교통 패턴을 예측 하는 데에는 신뢰성이 낮게 나타났다. 이런 문제를 해결하기 위한 대안으로 지능형 교통 시스 템(ITS)을 통해 얻은 빅데이터와 인공지능을 접목한 교통 흐름 예측 연구가 진행되어 왔다. 하 지만 시계열 분석에 일반적으로 사용되는 알고리즘인 RNN의 경우, 단기 예측에 최적화되어 장기 예측 정확도가 낮다는 단점을 가지고 있다. 이런 문제를 해결하기 위해 본 논문에서는 기온과 강수량 등의 기상 정보 외에도 각종 외부 요인들을 고려하여 장기적 시점에서 교통 혼 잡도를 예측하는 '심층 인공 신경망 모델'을 제안하였다. TOPIS 자료를 이용한 사례 연구 결과 서울시 주요 도로 링크의 교통 혼잡도를 90%에 가까운 정확도로 예측이 가능하였다. 추후 교 통사고나 도로 공사와 같은 도로에 영향을 미치는 이벤트 데이터를 추가로 확보할 수 있다면 정확도는 더욱 높아질 것으로 예상된다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구 고찰
Ⅲ. 학습체계 및 과정
1. 데이터 수집과 정제
2. 학습 과정
Ⅳ. 활용방안
Ⅴ. 결론
REFERENCES

저자정보

  • 김동현 Dong Hyun Kim. 홍익대학교 컴퓨터공학과 학사과정
  • 황기연 Kee Yeon Hwang. 홍익대학교 도시공학과 교수
  • 윤영 Young Yoon. 홍익대학교 컴퓨터공학과 조교수

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,600원

      0개의 논문이 장바구니에 담겼습니다.