원문정보
Memory Improvement Method for Extraction of Frequent Patterns in DataBase
초록
영어
Since frequent item extraction so far requires searching for patterns and traversal for the FP-Tree, it is more likely to store the mining data in a tree and thus CPU time is required for its searching. In order to overcome these drawbacks, in this paper, we provide each item with its location identification of transaction data without relying on conditional FP-Tree and convert transaction data into 2-dimensional position information look-up table, resulting in the facilitation of time and spatial accessibility. We propose an algorithm that considers the mapping scheme between the location of items and items that guarantees the linear time complexity. Experimental results show that the proposed method can reduce many execution time and memory usage based on the data set obtained from the FIMI repository website.
한국어
지금까지의 빈발 항목 추출에서는 FP-Tree에 대한 순회와 패턴의 탐색이 필수적인 과정이기 때문에 마이닝 데이터 를 트리에 저장하는데 공간이 필요하고 탐색하는데 CPU시간이 필요하기 마련이다. 이러한 단점을 극복하기 위하여 본 논문 에서는 조건부 FP-Tree의 의존하지 않고 트랜잭션 데이터의 각 항목들의 위치 정보를 부여하여 트랜잭션 데이터를 2차원의 위치정보 Look-Up테이블로 변환하여 시간과 공간적인 접근성을 용이하게 한다. 또한 항목과 항목의 위치에 대한 매핑배열 을 병행하여 시간 복잡도를 줄이는 방법을 고려하는 알고리즘을 제안한다. 실험 결과를 통하여 제안된 방법은 FIMI 저장소 웹 사이트에서 얻은 데이터 세트를 기반으로 많은 실행 시간과 메모리 사용을 줄일 수 있음을 보였다.
목차
Abstract
Ⅰ. 서론
Ⅱ. Prefix-Tree
Ⅲ. 제안된 방법
1. Look-Up Array
2. 빈발 패턴의 발생
Ⅳ. 실험 및 결과
1. 실험환경 및 데이터 집합
2. 성능분석
Ⅴ. 결론
References