원문정보
초록
영어
One of the key objectives of control systems is to maintain a system in a specific stable state. To achieve this goal, a variety of control techniques can be used and it is often uses a feedback control method. As known this kind of control methods requires mathematical model of the system. This article presents seesaw unstable system with two propellers which are controlled without use of a mathematical model instead. The goal was to control it using training data. For system control we use a logistic regression technique which is one of machine learning method. We tested our controller on the real model created in our laboratory and the experimental results show that instability of the seesaw system can be fixed at a given angle using the decision boundary estimated from the classification method. The results show that this control method for structural equilibrium can be used with relatively more accuracy of the decision boundary.
목차
1. Introduction
2. Classifier and decision boundary
3. Estimation of decision boundary
4. Implementation and Experimental results
5. Conclusion
References