원문정보
Comparison of EEG Topography Labeling and Annotation Labeling Techniques for EEG-based Emotion Recognition
초록
영어
Recently, research on emotion recognition based on EEG has attracted great interest from humanrobot interaction field. In this paper, we propose a method of labeling using image-based EEG topography instead of evaluating emotions through self-assessment and annotation labeling methods used in MAHNOB HCI. The proposed method evaluates the emotion by machine learning model that learned EEG signal transformed into topographical image. In the experiments using MAHNOB-HCI database, we compared the performance of training EEG topography labeling models of SVM and kNN. The accuracy of the proposed method was 54.2% in SVM and 57.7% in kNN.
한국어
최근 뇌파를 기반으로 한 인간의 감정을 인식하는 연구가 인간-로봇 상호작용 분야에서 활발히 진행되고 있다. 본 논 문에서는 MAHNOB-HCI에서 사용된 자기평가와 주석 레이블링 방법과는 다른, 이미지 기반의 뇌파 Topography 를 이용한 레이블링을 통해 감정을 평가하는 방법을 제안한다. 제안한 방법은 뇌파 신호를 Topography의 이미지로 변환하여 기계학습 모델을 학습하고 이를 기반으로 Valence 기반의 감정을 평가한다. 제안한 방법은 레이블링 과정 을 자동화하여 지연 시간을 없애고 객관적인 레이블링을 제공할 수 있다. MAHNOB-HCI 데이터베이스를 적용한 실험에서 SVM, kNN의 기계학습 모델을 학습하여 주석 레이블링과 성능 비교를 하였으며, 제안 방법의 감정인식 정확도를 SVM에서 54.2%, kNN에서 57.7%로 확인하였다.
목차
Abstract
1. 서론
2. 관련 연구
3. 레이블링 기법의 비교 고찰
3.1 데이터세트
3.2 레이블링 방법
3.3 제안하는 방법
4. 실험
4.1 실험 환경
4.2 실험 방법
4.3 실험 결과
5. 결론
Acknowledgement
참고문헌