원문정보
초록
영어
It is very important to search for and obtain an example of a similar judgment in case of court judgment. The existing judge's document search uses a method of searching through key-words entered by the user. However, if it is necessary to input an accurate keyword and the keyword is unknown, it is impossible to search for the necessary document. In addition, the detected document may have different contents. In this paper, we want to improve the effectiveness of the method of vectorizing a document into a three-dimensional space, calculating cosine similarity, and searching close documents in order to search an accurate judge's example. Therefore, after analyzing the similarity of words used in the judge's example, a method is provided for extracting the mode and inserting it into the text of the text, thereby providing a method for improving the cosine similarity of the document to be retrieved. It is hoped that users will be able to provide a fast, accurate search trying to find an example of a tax-related judge through the proposed model.
한국어
조세 심판에 대한 선결정례는 법원 판례의 경우 유사 심판례를 검색하여 파악하는 것이 매우 중요한 상황이다. 그러나 기존 심판문에 대한 검색은 사용자가 입력하는 키워드를 통하여 검색하는 방법을 사용하고 있으나, 정확한 키워 드의 입력이 필요하며, 키워드를 모르는 경우 필요한 문서를 검색하는 것은 불가능하다. 또한 검색된 문서 중에는 내용 이 다른 경우도 발생한다. 이에 본 논문에서는 정확한 심판례의 검색을 위하여 문서를 3차원 공간에 벡터화하고, 코사인 유사도를 계산하여, 거리상 가까운 문서를 검색하는 방법의 효율성을 향상시키기 위하여 심판례에서 사용되고 있는 단 어들의 유사도를 분석한 후, 최빈값을 추출하여 본문의 텍스트에 삽입하는 방법으로 검색하고자 하는 문서의 코사인 유사도를 향상시키는 방안을 제안한다. 제안 모델을 통하여 조세와 관련된 심판례를 검색하고자 하는 사용자에게 신속 하고, 정확한 검색을 제공할 수 있을 것으로 기대된다.
목차
Abstract
1. 서론
2. 관련연구
2.1 워드 임베딩
2.2 Doc2Vec
3. 제안 모델
3.1 시스템 구성도
3.2 문서 구조 분석
4. 실험 및 고찰
5. 결론 및 향후 연구 방향
REFERENCES
