원문정보
초록
영어
As cyber attack methods are becoming more intelligent, incidents such as security breaches and international crimes are increasing. In order to predict and respond to these cyber attacks, the characteristics, methods, and types of attack techniques should be identified. To this end, many security companies are publishing security intelligence reports to quickly identify various attack patterns and prevent further damage. However, the reports that each company distributes are not structured, yet, the number of published intelligence reports are ever-increasing. In this paper, we propose a method to extract structured data from unstructured security intelligence reports. We also propose an automatic intelligence report analysis system that divides a large volume of reports into sub-groups based on their topics, making the report analysis process more effective and efficient.
한국어
지능형 사이버 공격 기법이 다양화됨에 따라 보안 침해 사건, 글로벌 범죄 등의 사건 발생이 증가하고 있다. 지능형 공격을 예측하고 대응하기 위해서는 공격 기법의 특성, 수법, 유형을 파악해야 한다. 이를 위해 수많은 보안 기업 회사에서는 다양한 공격 기법을 빠르게 파악하고 더 큰 피해를 막기 위해 보안 인텔리전스 보고서를 배포한다. 하지만 각 기업에서 배포하는 보고서에 대한 형식이 맞춰져 있지 않으며, 대량의 비정형 보안 인텔리전스 보고서가 배포되고 있다. 본 논문은 비정형한 보안 인텔리전스 보고서에 대한 문제점을 고려하여 정형화된 데이터로 추출하는 방안을 제안 한다. 또한, 대량의 보안 인텔리전스 보고서를 파악하기 위해 소요되는 시간을 줄이고자 대량의 보고서를 주제별로 분류 할 수 있는 보안 인텔리전스 보고서 토픽 자동 추출 모델을 제안한다.
목차
Abstract
1. 서론
2. Topic Modeling
3. 연구 방법
4. 보안 인텔리전스 보고서를 기반한 토픽자동 추출 모델
4.1 분석 데이터
4.2 데이터 전처리
4.3 단어 모음
4.4 토픽 모델링
5. 보안 인텔리전스 보고서를 기반한 토픽자동 추출 모델링 실험 결과
6. 결론
REFERENCES
