원문정보
초록
영어
In this paper, we propose a Cascade Classifier face detection method using the Haar-like feature, which is complemented by the Flood Fill algorithm for lossy areas due to illumination and shadow in YCbCr color space extraction. The Cascade Classifier using Haar-like features can generate noise and loss regions due to lighting, shadow, etc. because skin color extraction using existing YCbCr color space in image only uses threshold value. In order to solve this problem, noise is removed by erosion and expansion calculation, and the loss region is estimated by using the Flood Fill algorithm to estimate the loss region. A threshold value of the YCbCr color space was further allowed for the estimated area. For the remaining loss area, the color was filled in as the average value of the additional allowed areas among the areas estimated above. We extracted faces using Haar-like Cascade Classifier. The accuracy of the proposed method is improved by about 4% and the detection rate of the proposed method is improved by about 2% than that of the Haar-like Cascade Classifier by using only the YCbCr color space.
한국어
본 논문에서는 YCbCr 색공간을 이용한 피부색 추출에서 조명과 그림자에 의한 손실 영역을 Flood Fill 알고리 즘을 이용하여 보완하고 Haar-like 특징을 이용한 Cascade Classifier 얼굴 검출 방법을 제안하였다. Haar-like 특징 을 이용한 Cascade Classifier는 이미지에서 기존의 YCbCr 색공간을 이용한 피부색 추출은 단순히 임계값만 사용하 기 때문에 조명, 그림자 등에 의해 잡음과 손실 영역이 발생할 수 있다. 이러한 문제를 해결하기 위해 침식, 팽창 연산을 사용하여 잡음을 제거하였고 손실 영역을 추정하기 위해 Flood Fill 알고리즘을 사용하여 손실 영역을 추정하였다. 추정 한 영역에 대하여 YCbCr 색공간의 임계값을 추가로 허용하였다. 나머지 손실영역에 대하여 위에서 추정한 영역중 추가 로 허용한 영역의 평균값으로 색을 채워 넣었다. 추출한 이미지에 Haar-like Cascade Classifier를 사용하여 얼굴을 검출하였다. 기존의 Haar-like Cascade Classifier의 방법보다 제안하는 방법이 정확도가 약 4% 향상되었으며 YCbCr 색공간만을 이용한 피부색 추출보다 제안하는 방법의 검출률이 약 2% 향상되었다.
목차
Abstract
1. 서론
2. 관련 연구
2.1 Haar-like
2.2 Cascade Classifier
2.3 YCbCr 색공간
3. 제안하는방법
3.1 피부색 추출
3.2 잡음제거 및 조명과 그림자 의한 손실 영역 보정
3.3 Haar-like Cascade Classifier
4. 실험 및 결과 고찰
5. 결론 및 향후 연구
REFERENCES
