earticle

논문검색

ICBM 기반 비즈니스 트랜스포메이션

클래스 불균형이 판별 알고리즘의 판별 성능에 미치는 영향에 대한 비교 연구 : 과대표집법을 중심으로

초록

한국어

최근 기계학습에서 판별 기술이 다양한 문제 해결에 활용되고 있다. 하지만 우리가 실제 다루고 있는 데이터셋들은 클래스 불균형이 많이 등장하고 있어 샘플 바이어스 등 왜곡된 결과가 도출되는 것을 해결하기 위해 다양한 방법들이 제안되고 있다. 그러나 어떤 클래스 불균형의 비율 및 불균형 완화 방법 별로 어떤 판별 알고리즘이 우수한지를 규명한 연구는 거의 존재하지 않는다. 따라서 본 연구의 목적은 다양한 클래스 불균형 상황에서 어떤 불균형 해소 방법과 classification algorithm의 적합성이 판별 성능을 극대화하는지를 파악하는 것이다. 이를 위해 본 연구에서는 UCI Repository에서 제공하는 벤치마크 데이터셋을 대상으로 클래스 불균형 문제 해소에 사용되는 방법을 각 대표적인 classification algorithm 에 적용하여 그 성능을 비교하자 한다. 본 연구에서는 과대표집법(over sampling)에 집중하여 고찰해보고자 한다.

목차

Abstract
Ⅰ. 서론
Ⅱ. 클래스 불균형 해소 방법
Ⅲ. 연구 모형
3.1 데이터 특성
3.2 알고리즘 특성
3.3 분류 성능
Ⅳ. 실험 방법
4.1 데이터셋
4.2 실험 과정
V. 결론
References

저자정보

  • 김정훈 일반대학원 경영학과, 경희대학교
  • 권오병 경희대학교, 경영학과

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.
      ※ 학술발표대회집, 워크숍 자료집 중 4페이지 이내 논문은 '요약'만 제공되는 경우가 있으니, 구매 전에 간행물명, 페이지 수 확인 부탁 드립니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.