원문정보
초록
영어
In this paper, we propose a method to remove the background area by analyzing the pattern of the character area. In the character detection result of the MSER(Maximally Stable External Regions) method which distinguishes a region having a constant contrast background regions were detected. To solve this problem, we use the MSER method in natural images, the background is removed by calculating the change rate by searching the character area and the background area which are not different from the areas where the contrast values are different from each other. However, in the background removed image, using the LBP(Local Binary Patterns) method, the area with uniform values in the image was determined to be a character area and character detection was performed. Experiments were carried out with simple images with backgrounds, images with frontal characters, and images with slanted images. The proposed method has a high detection rate of 1.73% compared with the conventional MSER and MSER + LBP method.
한국어
본 논문에서는 문자 영역의 패턴을 분석하여 배경 영역을 제거하는 방법을 제안하였다. 명암이 일정한 영역을 구분하는 MSER(Maximally Stable External Regions)방법의 문자 검출에서는 배경 영역이 포함되어 검출되었다. 이 러한 문제점을 해결하기 위해 자연 이미지에서 MSER 방법을 사용하여 명암 값이 차이가 나는 영역과 차이가 나지 않는 영역 즉 문자 영역과 배경 영역을 구해 변화율을 계산하여 배경을 제거하였다. 그러나 배경이 제거된 이미지에서 일부 제거되지 않는 배경 영역이 생겨 LBP(Local Binary Patterns)방법을 사용하여 이미지에서 균일한 값을 갖는 영역을 문자 영역이라고 판단하고 문자를 검출하였다. 실험 데이터는 배경이 단순한 이미지, 문자가 정면으로 구성된 이미지, 문자가 기울어진 이미지 등의 다양한 자연 이미지를 실험하였다. 제안하는 방법을 기존의 MSER, MSER+LBP 방법의 문자 검출 방법과 비교하였을 때 약 1.73%로 높은 검출률을 보였다.
목차
Abstract
1. 서론
2. 관련연구
2.1 MSER(Maximally Stable External Regions)
2.2 LBP(Local Binary Patterns)
3. 제안하는 방법
3.1 잡음 제거
3.2 배경 영역 제거
4. 실험 결과 및 고찰
5. 결론
REFERENCES