원문정보
초록
영어
In this paper, we propose an improved facial skin color extraction method to solve the problem that facial surface is lost due to shadow or illumination in skin color extraction process and skin color extraction is not possible. In the conventional HSV method, when facial surface is brightly illuminated by light, the skin color component is lost in the skin color extraction process, so that a loss area appears on the face surface. In order to solve these problems, we extract the skin color, determine the elements in the H channel value range of the skin color in the HSV color space among the lost skin elements, and combine the coordinates of the lost part with the coordinates of the original image, To minimize the number of In the face detection process, the face was detected using the LBP Cascade Classifier, which represents texture feature information in the extracted skin color image. Experimental results show that the proposed method improves the detection rate and accuracy by 5.8% and 9.6%, respectively, compared with conventional RGB and HSV skin color extraction and face detection using the LBP cascade classifier method.
한국어
본 논문에서는 피부색 추출과정에서 그림자나 조명에 의해 얼굴 표면이 손실되어 피부색 추출이 되지 않는 문제 점을 해결하기 위하여 개선된 얼굴 피부색 추출 방법을 제안하였다. 기존의 HSV를 이용한 방법은 조명에 의해 얼굴표 면이 밝게 비춰지는 경우에 피부색 추출과정에서 피부색 요소가 손실되기 때문에 얼굴표면에 손실 영역이 나타나게 된다. 이러한 문제점을 해결하기 위해 피부색을 추출한 뒤 손실된 피부 요소 중 HSV 색공간에서 피부색의 H 채널 값 범위에 있는 요소들을 판단하여 손실된 부분의 좌표와 원본 이미지 좌표의 결합을 통해 피부색이 손실되는 부분을 최소 화 하는 방법을 제안하였다. 얼굴 검출 과정으로는 추출한 피부색 이미지에서 질감 특징정보를 나타내는 LBP Cascade Classifier를 이용하여 얼굴을 검출하였다. 실험결과 제안하는 방법이 기존의 RGB와 HSV 피부색 추출과 LBP Cascade Classifier 방법을 이용한 얼굴검출보다 검출률과 정확도는 각각 5.8%, 9.6% 향상된 결과를 보였다.
목차
Abstract
1. 서론
2. 관련연구
2.1 Skin Color Extract
2.2 LBP Cascade Classifier Detection
3. 제안하는 방법
3.1 피부색 추출
3.2 피부색 영역 손실 개선 방법
4. 결과 및 고찰
5. 결론
REFERENCES