원문정보
Road Surface Damage Detection based on Object Recognition using Fast R-CNN
초록
영어
The road management institute needs lots of cost to repair road surface damage. These damages are inevitable due to natural factors and aging, but maintenance technologies for efficient repair of the broken road are needed. Various technologies have been developed and applied to cope with such a demand. Recently, maintenance technology for road surface damage repair is being developed using image information collected in the form of a black box installed in a vehicle. There are various methods to extract the damaged region, however, we will discuss the image recognition technology of the deep neural network structure that is actively studied recently. In this paper, we introduce a new neural network which can estimate the road damage and its location in the image by region-based convolution neural network algorithm. In order to develop the algorithm, about 600 images were collected through actual driving. Then, learning was carried out and compared with the existing model, we developed a neural network with 10.67% accuracy.
한국어
도로 관리 주체는 도로 파손을 보수하기 위해 적지 않은 비용을 투입한다. 이러한 파손은 자연 요인과 노후화로 인하여 필연적으로 발생을 하는데, 효율적인 보수를 위한 유지보수 기 술이 필요하다. 이런 수요에 대응하기 위해 여러 가지 기술들이 개발되고 적용되고 있지만, 최 근 들어서는 차량용 블랙박스 형태로 수집한 영상 정보를 바탕으로 도로 노면 파손 유지 보수 기술이 개발되고 있다. 이 파손 영역을 추출하는 방법에는 여러 가지가 있지만, 본 논문에서는 최근 활발히 연구되고 있는 심층 신경망 구조의 영상인식 기술에 대해 논하고자 한다. 특히 영역 기반의 합성곱 알고리즘을 이용하여 영상 내에서 도로 파손 유무와 그 영역을 추정할 수 있는 새로운 심층 신경망을 소개한다. 이를 개발하기 위해 실제 주행을 통해서 600여장의 영상 데이터를 수집하였고, 이를 활용하여 학습을 수행하였다. 그 결과 기존 모델과 성능을 비교하 여 10.67% 향상된 신경망을 개발하였다.
목차
ABSTRACT
Ⅰ. 서론
1. 배경
2. 관련 연구
Ⅱ. 영역 기반 합성곱을 이용한 심층 신경망
1. ResNet 기반의 Fast R-CNN 모델 설계
2. Proposed Net 기반의 Fast R-CNN 모델 설계
Ⅲ. 실험 결과
1. 학습 환경
2. 실험 결과 비교 및 분석
Ⅳ. 결론
ACKNOWLEDGEMENTS
REFERENCES