원문정보
Big Data-based Medical Clinical Results Analysis
초록
영어
Recently, it has become possible to collect, store, process, and analyze data generated in various fields by the development of the technology related to the big data. These big data technologies are used for clinical results analysis and the optimization of clinical trial design will reduce the costs associated with health care. Therefore, in this paper, we are going to analyze clinical results and present guidelines that can reduce the period and cost of clinical trials. First, we use Sqoop to collect clinical results data from relational databases and store in HDFS, and use Hive, a processing tool based on Hadoop, to process data. Finally we use R, a big data analysis tool that is widely used in various fields such as public sector or business, to analyze associations.
한국어
최근 빅데이터 관련 기술들이 발전함에 따라 다양한 분야에서 생성되는 데이터들을 수집하여 저장하고 처리 및 분석할 수 있게 되었다. 이러한 빅데이터 기술들을 임상 결과 분석에 활용하고, 임상시험 설계 최적화를 통해 보건의료분야에 투입되는 막대한 비용을 절감할 수 있을 것으로 전망된다. 따라서 본 논문에서는 임상 결과를 분석하여 임상시험 기간과 비용 등을 줄일 수 있는 가이드 정보를 제시하고자 한다. 먼저 Sqoop을 사용하여 임상 결과 데이터가 저장된 관계형 데이터 베이스로부터 HDFS에 수집하여 저장하고, 하둡을 기반으로 동작하는 처리 도구인 Hive를 이용하여 데이터를 처리한다. 공 공분야, 기업 등 각 분야에서 많이 활용되고 있는 빅데이터 분석 도구인 R을 이용하여 연관성 분석을 한다.
목차
Abstract
Ⅰ. 서론
Ⅱ. 관련 기술
1. 빅데이터
2. 하둡(Hadoop)
3. 스쿱(SQOOP)
4. 하이브(Hive)
5. R 기반 연관성 분석
Ⅲ. 설계 및 구현
Ⅳ. 결론
References