원문정보
A reuse recommendation framework of artifacts based on task similarity to improve R&D performance
초록
영어
Research and development(R&D) activities consist of analytical survey and state-of-the-art report writing for technical information. As R & D activities become more concrete, it often happens that they refer to related technical documents that were created in previous steps or created in previous similar projects. This paper proposes a research-task based reuse recommendation framework(RTRF), which is a reuse recommendation system that enables researchers to efficiently reuse the existing artifacts. In addition to the existing keyword-based retrieval and reuse, the proposed framework also provides reusable information that researchers may need by recommending reusable artifacts based on task similarity; other developers who have a similar task to the researcher's work can recommend reusable documents. A case study was performed to show the researchers’ efficiency in the process of writing the technology trend report by reusing existing documents. When reuse is performed using RTRF, it can be seen that documents of different stages or other research fields are reused more frequently than when RTRF is not used. The RTRF may contribute to the efficient reuse of the desired artifacts among huge amount of R&D documents stored in the repository.
한국어
연구 개발 활동은 다양한 기술 정보의 조사 분석 및 기술 보고서 작성 활동들로 구성된다. 연구 개발 활동이 구체화되면서 이전 단계에 작성된, 또는 이전의 유사 프로젝트에서 작성된 관련 기술 문서를 참조하는 일이 많이 발생한다. 본 논문에서는 연구자가 원하는 이전 산출물의 효율적인 재사용을 가능하게 하는 재사용 추천 프레임워 크인 RTRF(research task based reuse recommendation framework)를 제안한다. 제안하는 프레임워크는 기존의 유사어 기반 검색 및 재사용에 추가하여 태스크 유사도를 기반으로, 개발자의 연구와 비슷한 흐름을 가지고 있는 다른 개발자가 재사용한 문서를 추천해주어 개발자에게 필요할 수 있는 정보를 제공한다. 사례연구는 연구자들이 기존 문서를 재사용하여 기술동향보고서를 작성하는 과정에서의 효율성을 보이기 위해 수행하였다. RTRF를 이용 하여 재사용을 수행하는 경우, RTRF를 이용하지 않는 경우와 비교했을 때 다른 단계의 문서 및 다른 연구분야의 문서를 더 빈번하게 재사용하는 것을 알 수 있었다. 본 논문에서 제안하는 RTRF는 개발자가 저장소에 저장되어 있는 방대한 양의 R&D 문서들 중에서 원하는 문서를 효율적으로 재사용하는 것에 큰 기여를 한다.
목차
Abstract
1. 서론
2. 관련연구
3. Research Task와 프레임워크
4. 사례연구
4.1 사용자 요구에 부합하는 추천 사례
4.2 기존 방법과 제안 방법 비교 사례
5. 결론
REFERENCES