earticle

논문검색

Interpretation of Teacher Knowledge in Geometry with Shulman–Fischbein Framework : Cases of US Preservice Teachers

원문정보

Shulman–Fischbein 개념틀을 활용한 예비 교사의 기하 영역에 대한 지식 해석 : 미국 예비교사들의 사례

Ji Sun Kim

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

There is no doubt about the importance of teacher knowledge for good teaching. Many researches attempted to conceptualize elements and features of teacher knowledge for teaching in a quantitative way. Unlike existing researches, this article suggests an interpretation of preservice teacher knowledge in the field of geometry using the Shulman – Fischbein framework in a qualitative way. Seven female preservice teachers voluntarily participated in this research and they performed a series of written tasks that asked their subject matter knowledge (SMK) and pedagogical content knowledge (PCK). Their responses were analyzed according to mathematical algorithmic - , formal - , and intuitive – SMK and PCK. The interpretation revealed that preservice teachers had overally strong SMK, their deeply rooted SMK did not change, their SMK affected their PCK, they had appropriate PCK with regard to knowledge of student, and they tended to less focus on mathematical intuitive – PCK when they considered instructional strategies. The understanding of preservice teachers’ knowledge throughout the analysis using Shulman-Fischbein framework will be able to help design teacher preparation programs.

한국어

많은 사람들이 교수에서 교사의 지식이 중요다고 동의하고, 이에 대해 많은 연구들이 정량적인 접근 방식을 사용하여 잘 가르치기 위해 교사가 갖추어야 할 지식의 요소와 특징 을 규명하려고 시도하였다. 이러한 기존의 연구들과는 달리 본 논문은 기하 영역에서 예비 교사의 지식을 정성적인 방법으로 Shulman-Fischbein 개념틀을 활용하여 해석하는 방법을 제안한다. 7명의 여 예비교사들이 본 연구에 자원하여 참여하였고, 각 예비교사는 지필 형식 으로 된 일련의 과제를 수행하였다. 수집된 예비교사의 지식은 수학적 알고리즘적 SMK, 형 식적 SMK, 직관적 SMK, 알고리즘적 PCK, 형식적 PCK, 직관적 PCK로 분석되었다. 해결 결과 예비 교사들은 강한 SMK를 갖고 있고, 그들의 뿌리깊게 자리잡은 SMK는 변하지 않 으며, 그들의 SMK와 PCK는 상당한 관련이 있고, 그들은 학생에 대한 지식과 관련하여 적 절한 PCK를 갖고 있지만, 교수학적 전략을 제시함에 있어 직관적 PCK에 상대적으로 덜 고 려하는 경향을 보였다. Shulman-Fischbein 개념틀을 활용하여 분석해 드러난 예비교사들의 지식은 향후 교사 양성 프로그램을 계획하는데 도움을 줄 수 있을 것이다.

목차

Abstract
I. Introduction
II. Theoretical Framework
1. Shulman’s Dimensions of Content Knowledge for Teaching
2. Three Components of Mathematical Knowledge and Their Interaction
3. Shulman–Fischbein Framework
III. Methods
1. Participants
2. Knowledge of Content and Students (KCS) Tasks
3. Observations
4. Data Analysis
IV. Interpretation of Preservice Teachers’ Knowledge of Content and Students
1. Mathematical Algorithmic–SMK
2. Mathematical Formal–SMK
3. Mathematical Intuitive–SMK
4. Mathematical Algorithmic–PCK
5. Mathematical Formal–PCK
6. Mathematical Intuitive–PCK
V. Discussion
1. Preservice Teachers’ Strong SMK
2. Deeply Rooted SMK
3. Relationship between SMK and PCK
4. Preservice Teachers’ PCK with Regard to Knowledge of Students
5. Less Focus on Mathematical Intuitive-PCK in Instructional Strategies
VI. Conclusions and Implications
References
초록
Appendix

저자정보

  • Ji Sun Kim 김지선. University of Georgia

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      0개의 논문이 장바구니에 담겼습니다.