원문정보
초록
영어
In this study, the surface air temperature (SAT) and the dew-point temperature (DPT) are applied as the covariance of the location parameter among three parameters of GEV distribution to reflect the non-stationarity of extreme rainfall due to climate change. Busan station is selected as the study site and the monthly maximum daily rainfall depth from May to October is used for analysis. Various models are constructed to select the most appropriate co-variate(SAT and DPT) function for location parameter of GEV distribution, and the model with the smallest AIC(Akaike Information Criterion) is selected as the optimal model. As a result, it is found that the non-stationary GEV distribution with co-variate of exp(DPT) is the best. The selected model is used to analyze the effect of climate change scenarios on extreme rainfall quantile. It is confirmed that the design rainfall depth is highly likely to increase as the future DPT increases.
한국어
본 연구에서는 기후변화에 따른 극한 강우의 비정상성을 반영하기 위하여 GEV 분포의 3개 매개변수 중 위치매개변수를 공변량으로 적용하여, 지표면 기온(Surface air temperature, SAT) 및 이슬점 온도(Dew point temperature, DPT)을 고려한 비정상성 빈도해석이 실시된다. 부산 지점이 연구대상지점으로 선정되었으며, 5월부터 10월까지의 월 최대 일강수량을 이용하여 분석을 수행하였다. GEV 분포의 위치 매개변수를 위한 가장 적절한 공변량(기온과 이슬점 온도) 함수를 선택하기 위하여 다양한 모델을 구성하였으며, 구성된 모델 중 AIC(Akaike Information Criterion)가 가장 작은 모델을 최적 모델로 선정하였다. 분석 결과, exp(DPT)가 공변량인 비정상성 GEV 분포가 가장 적합한 것으로 나타났다. 선택된 모델을 이용하여 기후변화 시나리오에 따른 확률강우량의 영향을 분석하였으며, 부산지점의 경우 미래 이슬점 온도가 증가함에 따라 확률강우량이 증가할 가능성이 매우 높음을 살펴볼 수 있었다.
목차
Abstract
1. 서론
2. 연구방법
2.1 기상자료
2.2 정상성 GEV 분포
2.3 비정상성 GEV 분포
3. 연구결과
3.1 초등 분석
3.2 비정상성 빈도해석
4. 결론
사사
References