원문정보
Classification of Trucks using Convolutional Neural Network
초록
영어
This paper proposes a classification method using the Convolutional Neural Network(CNN) which can obtain the type of trucks from the input image without the feature extraction step. To automatically classify vehicle images according to the type of truck cargo box, the top view images of the vehicle are used as input image and we design the structure of the CNN suitable for the input images. Learning images and correct output results is generated and the weights of neural network are obtained through the learning process. The actual image is input to the CNN and the output of the CNN is calculated. The classification performance is evaluated through comparison CNN output with actual vehicle types. Experimental results show that vehicle images could be classified with more than 90 percent accuracy according to the type of cargo box and this method can be used for pre-classification for inspecting loading defect.
한국어
본 논문에서는 화물차 차종을 분류하기 위해서 특징추출단계 없이 입력영상으로부터 차종분류결과를 얻을 수 있는 합성곱 신경망을 사용한 분류방법을 제안한다. 차량의 위에서 촬영된 영상을 입력으로 사용하고 입력영상에 적합한 합성곱 신경망의 구조를 설계한다. 차종과 화물칸의 형태에 따라 차종을 자동 분류하기 위한 학습데이터를 생성하고 지도학습의 형태로 학습시키기 위해 분류된 영상과 올바른 출력결과를 제시하여 신경망의 가중치를 학습시킨다. 실제 영상을 입력하여 합성곱 신경망의 출력을 계산하였고 실제 차종과의 비교를 통해 분류 성능을 평가 하였다. 실험결과 화물의 차종과 적재함 의 형태에 따라 90%이상의 정확도로 영상을 분류할 수 있었고, 적재불량 검사의 사전 분류에 활용될 수 있다.
목차
Abstract
1. 서론
2. 합성곱 신경망을 사용한 영상분류
2.1 합성곱 네트워크
2.2 전결합 네트워크
3. 제안한 CNN 층의 구성과 학습데이터
4. 실험결과
5. 결론
REFERENCES
