원문정보
초록
영어
Recent approaches to Relation Extraction methods mostly tend to be limited to mention level relation extractions. These types of methods, while featuring high performances, can only extract relations limited to a single sentence or so. The inability to extract these kinds of data is a terrible amount of information loss. To tackle this problem this paper presents an Augmented External Memory Neural Network model to enable Global Relation Extraction. the proposed model’s Global relation extraction is done by first gathering and analyzing the mention level relation extraction by the Augmented External Memory. Additionally the proposed model shows high level of performances in korean due to the fact it can take the often omitted subjects and objectives into consideration.
한국어
최근 존재하는 대부분의 관계 추출 모델은 언급 수준의 관계 추출 모델이다. 이들은 성능은 높지만, 장문의 텍스트에 존재하는 다수의 문장을 처리할 때, 문서 내에 주요 개체 및 여러 문장에 걸쳐서 표현되는 전역적 개체 관계를 파악하지 못한다. 그리고 이러한 높은 수준의 관계를 정의하지 못하는 것은 데이터의 올바른 정형화를 막는 중대한 문제이다. 이 논문 에서는 이러한 문제를 해결하고 전역적 관계를 추출하기 위하여 외부 메모리 신경망 모델을 이용하는 새로운 방식의 전역 관계 추출 모델을 제안한다. 제안하는 모델은 1차적으로는 단편적인 관계 추출을 실행한 뒤, 외부메모리 신경망을 이용하여 단편적인 관계들을 분석 및 종합하여 텍스트 전체로부터 전역적 관계들을 추출한다. 또한 제안된 모델은 외부 메모리를 통 하여 전역적 관계 추출 외에도 주어와 목적어 생략이 잦은 한국어 관계 추출에도 뛰어난 성능을 보인다.
목차
Abstract
1. 서론
2. 관련 연구
2.1 관계 추출 (Relation Extraction)
2.2 메모리 증강 신경망 (Memory Augmented Neural Network)
2.3 메타 러닝 (Meta Learning)
3. 모델 및 훈련
3.1 단편적 관계 추출 모델
3.2 외부 메모리
3.3 훈련 방법
4. 데이터 및 실험
4.1 데이터
4.2 실험
4.3 결과
5. 결론
REFERENCES