earticle

논문검색

A Study on Fiducial Marker based Point Features Tracking Algorithm for Human-computer Interaction

원문정보

인간-컴퓨터 상호작용 게임을 위한 인공표식 기반의 특징점 추적에 대한 연구

Jonghwan Beck, Sanghoon Kim

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Recently, marker-based augmented reality technology has attracted attention in gesture based human-computer interaction due to the users' demand. However, the blur effect that occurs when the object shows fast motion in frames limits the marker detection and tracking. Conventional de-blurring techniques are not effective for real-time video without the task of extracting a specific frame from a full frame. In this paper, we proposed the algorithm which detects special marker first, and also tracks point features of markers based on optical flow method. Especially, marker tracking method extracts point features also using the FAST algorithm and calculates motion vectors by analyzing the motion of point features using Lucas-Kanade method. Also, we implemented a marker pose estimation by solving Perspective-n-Point problem. Our proposed system showed more improved results than conventional methods especially with the rate of 37% higher in the frame processing speed of marker tracking video. In addition, the marker pose estimation was graphically represented. It is expected that this research will be useful for gesture-based human-computer interaction field and mobile robot field through camera in real environment.

한국어

사용자의 수요가 증가함으로 인하여 최근의 마커 기반 증강현실 기술은 제스처 기반 인간-컴 퓨터 상호작용 분야에서 주목을 받고 있다. 그러나 개체가 프레임에서 빠른 움직임을 보일 때 발 생하는 모션 블러 효과에 의하여 마커의 추적 및 감지의 한계점이 발생한다. 기존의 디블러링 기 술들에서 전체 프레임 중 특정 프레임을 추출하는 작업이 없다면 실시간 비디오에서 사용하기에 문제가 있다. 본 논문에서는 인간-컴퓨터 상호작용을 위하여 ArUco 마커를 사용한 특징점 기반 광학흐름 추적 방법을 제안하며, 마커를 이용한 자세 추정 방법을 설명한다. 이 방법은 ArUco 마 커를 감지하고 특수한 마커 추적 방법을 통해 마커 감지를 보완한다. 특히 마커 추적 방법은 FAST 알고리즘을 사용하여 특징점을 추출하고 루카스-카나데 방법을 사용하여 특징점의 움직임 을 분석하여 움직임 벡터를 계산한다. 또한 Perspective-n-Point 문제를 해결하여 마커 포즈 추정 을 구현했다. 제안된 시스템은 기존의 방법보다 높은 검출률을 보였으며, 마커를 포함한 비디오 에서 프레임 처리 속도가 약 37% 향상되었다. 또한 마커 포즈 추정을 그래픽으로 구현하였다. 이 연구는 실제 환경에서 카메라를 통한 제스처 기반 인간-컴퓨터 상호작용 분야와 또한 이동 로봇 분야에도 도움이 될 것이라 기대된다.

목차

ABSTRACT
 1. Introduction
 2. Marker motion tracking based on feature points
  2.1 Marker detection
  2.2 Fiducial Marker
  2.3 Marker tracking
 3. Pose estimation through marker
  3.1 Camera calibration
  3.2 Pose estimation through camera position and orientation
 4. Experiment
  4.1 Experimental tools
  4.2 Marker tracking performance evaluation
  4.3 Marker posture estimation experiment
 5. Conclusion
 Reference
 <국문초록>
 <결론 및 향후 연구>

저자정보

  • Jonghwan Beck 백종환. Dept. of Electrical, Electronic and Control Engineering, Hankyong National University
  • Sanghoon Kim 김상훈. Dept. of Electrical, Electronic and Control Engineering, Hankyong National University

참고문헌

자료제공 : 네이버학술정보

    ※ 기관로그인 시 무료 이용이 가능합니다.

    • 4,000원

    0개의 논문이 장바구니에 담겼습니다.