원문정보
A Study on Improvement of Dynamic Object Detection using Dense Grid Model and Anchor Model
초록
영어
In this paper, we propose both Dense grid model and Anchor model to improve the recognition rate of dynamic objects. Two experiments are conducted to study the performance of two proposed CNNs models (Dense grid model and Anchor model), which are to detect dynamic objects. In the first experiment, YOLO-v2 network is adjusted, and then fine-tuned on KITTI datasets. The Dense grid model and Anchor model are then compared with YOLO-v2. Regarding to the evaluation, the two models outperform YOLO-v2 from 6.26% to 10.99% on car detection at different difficulty levels. In the second experiment, this paper conducted further training of the models on a new dataset. The two models outperform YOLO-v2 up to 22.40% on car detection at different difficulty levels.
한국어
본 논문은, 동적인 객체의 인식률 향상을 위해 고밀도 그리드 모델과 앵커 모델을 제안하 였다. 두 가지 실험은 수행하여 제안하는 CNN 모델들을 제안하였다. 첫 번째 실험에 있어서, YOLO-v2모델을 KITTI 데이터 셋에 적용시켜 보았고, 고밀도 그리드 모델과 앵커 모델을 기 존 YOLO-v2와 비교하였다. 실험에 있어서, 본 논문에서 제안하는 두 가지 모델은 기존의 YOLO-v2모델에 비하여 ‘어려움’ 난이도의 자동차 검지에 있어서 6.26%에서 10.99%까지 우 수한 성능을 나타낸 것을 확인하였다. 두 번째 실험에 있어서는 새로운 데이터 셋을 학습하 였고, 두 가지 모델은 기존의 YOLO-v2모델보다 22.4%까지 ‘어려움’ 난이도의 자동차 인식률 향상이 있음을 확인할 수 있었다.
목차
ABSTRACT
Ⅰ. 서론
1. 개요
Ⅱ. 제안하는 방법
1. 실험 1
2. 실험 2
3. 토의
4. 고찰
Ⅲ. 결론
ACKNOWLEDGEMENTS
REFERENCES