earticle

논문검색

Dam Sensor Outlier Detection using Mixed Prediction Model and Supervised Learning

원문정보

초록

영어

An outlier detection method using mixed prediction model has been described in this paper. The mixed prediction model consists of time-series model and regression model. The parameter estimation of the prediction model was performed using supervised learning and a genetic algorithm is adopted for a learning method. The experiments were performed in artificial and real data set. The prediction performance is compared with the existing prediction methods using artificial data. Outlier detection is conducted using the real sensor measurements in a dam. The validity of the proposed method was shown in the experiments.

목차

Abstract
 1. Introduction
 2. Existing Method
  2.1 Regression model first and ARIMA second prediction (Regression-ARIMA)
  2.2 Time series model first and regression second prediction (ARIMA- Regression)
  2.3 Neural network prediction
 3. Proposed Method
  3.1 Construction of mixed prediction model
  3.2 Parameter estimation by genetic algorithm
 4. Test Signal
  4.1 Virtual signal
  4.2 Pore water pressure in actual dam
 5. Experimental Results
  5.1 Experimental result of virtual signal prediction
  5.2 Experimental result of actual signal prediction
  5.3 Outlier detection result of actual sensor signal
 6. Discussion and Conclusion
 References

저자정보

  • Chang-Mok Park Department of Industrial Management Engineering, INDUK University, Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.