earticle

논문검색

기술 융합(TC)

합성곱 신경망의 학습 가속화를 위한 방법

원문정보

A Method for accelerating training of Convolutional Neural Network

최세진, 정준모

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Recently, Training of the convolutional neural network (CNN) entails many iterative computations. Therefore, a method of accelerating the training speed through parallel processing using the hardware specifications of GPGPU is actively researched. In this paper, the operations of the feature extraction unit and the classification unit are divided into blocks and threads of GPGPU and processed in parallel. Convolution and Pooling operations of the feature extraction unit are processed in parallel at once without sequentially processing. As a result, proposed method improved the training time about 314%.

한국어

최근 CNN(Convolutional Neural Network)의 구조가 복잡해지고 신견망의 깊이가 깊어지고 있다. 이에 따라 신 경망의 학습에 요구되는 연산량 및 학습 시간이 증가하게 되었다. 최근 GPGPU 및 FPGA를 이용하여 신경망의 학습 속도를 가속화 하는 방법에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 NVIDIA GPGPU를 제어하는 CUDA 를 이용하여 CNN의 특징추출부와 분류부에 대한 연산을 가속화하는 방법을 제시한다. 특징추출부와 분류부에 대한 연산을 GPGPU의 블록 및 스레드로 할당하여 병렬로 처리하였다. 본 논문에서 제안하는 방법과 기존 CPU를 이용하 여 CNN을 학습하여 학습 속도를 비교하였다. MNIST 데이터세트에 대하여 총 5 epoch을 학습한 결과 제안하는 방 법이 CPU를 이용하여 학습한 방법에 비하여 약 314% 정도 학습 속도가 향상된 것을 확인하였다.

목차

요약
 Abstract
 Ⅰ. 서론
 Ⅱ. 본론
  1. Fully-connected layer 연산 가속화
  2. 가중치 갱신
 Ⅲ. 실험
 Ⅳ. 결론
 References

저자정보

  • 최세진 Se Jin Choi. 준회원, 서경대학교 컴퓨터공학과
  • 정준모 Jun Mo Jung. 정회원, 서경대학교 전자공학과

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.