원문정보
Super-Pixels Generation based on Fuzzy Similarity
초록
영어
In recent years, Super-pixels have become very popular for use in computer vision applications. Super-pixel algorithm transforms pixels into perceptually feasible regions to reduce stiff features of grid pixel. In particular, super-pixels are useful to depth estimation, skeleton works, body labeling, and feature localization, etc. But, it is not easy to generate a good super-pixel partition for doing these tasks. Especially, super-pixels do not satisfy more meaningful features in view of the gestalt aspects such as non-sum, continuation, closure, perceptual constancy. In this paper, we suggest an advanced algorithm which combines simple linear iterative clustering with fuzzy clustering concepts. Simple linear iterative clustering technique has high adherence to image boundaries, speed, memory efficient than conventional methods. But, it does not suggest good compact and regular property to the super-pixel shapes in context of gestalt aspects. Fuzzy similarity measures provide a reasonable graph in view of bounded size and few neighbors. Thus, more compact and regular pixels are obtained, and can extract locally relevant features. Simulation shows that fuzzy similarity based super-pixel building represents natural features as the manner in which humans decompose images.
한국어
최근에는 슈퍼-픽셀 (super-pixel)은 컴퓨터 발전 응용에 널리 사용되고 있다. 슈퍼 픽셀 알고리즘은 픽셀을 지각적으로 실행이 가능한 영역으로 변환하여 그리드 픽셀의 경직된 특징을 줄일 수 있다. 특히, 슈퍼 픽셀은 깊이 추정, 골격 작업, 바디 라벨링 및 기능 국소화 등에 사용된다. 그러나 이러한 작업을 수행하기 위해 우수한 슈퍼 픽셀 파티션을 생성하는 것은 쉽지 않다. 특히 슈퍼 픽셀은 비합, 지속, 폐쇄, 지각 불변과 같은 형태 측면을 고려할 때보다 의미있는 특징을 만족시키지는 못한다. 본 논문에서는 단순 선형 반복 클러스터링과 퍼지 클러스터링 개념을 결합한 고급 알고리즘을 제안한다. 단순 선형 반복 클러스터링 기술은 이미지 경계, 속도, 메모리 효율이 기존 방법보다 높다. 그것은 형태 측면의 맥락에서 슈퍼 픽셀 형태에 대해 양호하게 작거나 규칙적인 특성을 제안하는 것은 아니다. 퍼지 유사성 측정은 제한된 크기와 이웃을 고려하여 합리적인 그래프를 제공한다. 보다 작고 규칙적인 픽셀을 얻으며 부분적으로 관련된 특징을 추출 할 수 있다. 시뮬레이션은 퍼지 유사성 기반 슈퍼 픽셀 생성은 사람의 이미지를 분해하는 방식으로 자연적 특징을 대표적으로 나타낸다.
목차
Abstract
I. Introduction
II. Background
III. Combining super-pixel and fuzzy clustering
1. Fuzzy Partitioning
2. Fuzzy SLIC Super-pixel algorithm
IV. Experimental validation
V. Conclusions
References