원문정보
초록
영어
With the recent spread of smartphones and the introduction of web services, online users can access large-scale content regardless of time or place. However, users have had trouble finding the content they wanted among large-scale content. To solve this problem, user modeling and content recommendation system have been actively studied in various fields. However, in spite of active changes in senior groups according to the changes in information environment, research on user modeling and content recommendation system focused on senior groups are insufficient. In this paper, we propose a method of modeling smart senior based on their preference, and further develop a smart senior classification model using machine learning methods. As a result, we can not only grasp the preferences of smart seniors, but also develop a smart senior classification model, which is the foundation for the research of a recommendation system which will provide the activities and contents most suitable for senior groups.
한국어
최근 스마트폰의 보급 및 웹 서비스의 도입으로 온라인 사용자들은 대규모의 콘텐츠를 시간과 장소에 관계없이 접할 수 있게 되었다. 그러나 사용자들은 대규모의 콘텐츠 사이에서 원하는 콘텐츠를 찾는 데 어려움을 겪게 되었다. 이러한 문제를 해결하기 위해 다양한 분야에서 사용자 모델링 및 추천 시스템에 대한 연구가 활발하게 수행되었다. 그러나 정보 환경의 변화에 따른 시니어 계층의 적극적인 변화에도 불구하고 시니어 계층에 초점을 맞춘 사용자 모델링 및 추천 시스템에 대한 연구는 매우 부족한 실정이다. 이에 본 논문에서는 기계 학습 방법을 기반으로 스마트 시니어 계층의 선호도를 파악할 수 있는 모델링 방법을 제안하고, 스마트 시니어 분류 모델을 개발 한다. 이 결과, 스마트 시니어 계층의 선호도를 파악할 수 있을 뿐만 아니라 스마트 시니어 분류 모델 개발을 통해 시니어 사용자에게 가장 적합한 활동 및 콘텐츠를 제공하는 콘텐츠 추천 연구에 대한 발판을 마련하였다.
목차
Abstract
1. 서론
2. 이론적 배경
2.1 스마트 시니어
2.2 시니어 온라인 활동 프로파일 구조 설계
3. 연구 방법
3.1 연구 자료
3.2 연구 방법
3.3 데이터 전처리
4. 연구 결과
4.1 비지도 학습
4.2 지도 학습
5. 결론 및 제언
ACKNOWLEDGMENTS
REFERENCES