earticle

논문검색

Super-Resolution Image Reconstruction with Improved Sparse Representation

초록

영어

In this paper, we present a new approach to reconstruct a high resolution (HR) image from a low resolution (LR) input image based on a two dimensional (2D) sparse method. The new method consists of three phases. Firstly, the nonlinear feature of the input LR image is divided into the linear subspace, and then LR-HR dictionaries are learned to reduce the blurred artifacts of the image. Secondly, 2D sparse representation and self-similarity are developed to strengthen and enhance the image structure. Finally, the final HR image is achieved by reconstruction of all HR patches. Simulation results demonstrated that our proposed method achieved superior results on real images, and shows various improvements in terms of PSNR and SSIM values as compared with some other competent methods.

목차

Abstract
 1. Introduction
 2. Problem Formulation and Modeling
  2.1. Subspace Modeling
  2.2. LR-HR Dictionary
 3. 2D Sparse Model
  3.1. Self-similarity Features
  3.2. 2D Dictionary
 4. Image Reconstruction
 5. Simulation Results
  5.1. Simulation Results with Different Images
  5.2. Visual Analysis with Different Patch Size
  5.3. Simulation Results Comparison in Terms of PSNR and RMSE
 6. Conclusions
 References

저자정보

  • Muhammad Sameer Sheikh Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China
  • Qunsheng Cao Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.