earticle

논문검색

An Effective Data Model for Forecasting and Analyzing Securities Data

초록

영어

Machine learning is a field of artificial intelligence (AI), and a technology that collects, forecasts, and analyzes securities data is developed upon machine learning. The difference between using machine learning and not using machine learning is that machine learning—seems similar to big data—studies and collects data by itself which big data cannot do. Machine learning can be utilized, for example, to recognize a certain pattern of an object and find a criminal or a vehicle used in a crime. To achieve similar intelligent tasks, data must be more effectively collected than before. In this paper, we propose a method of effectively collecting data.

목차

Abstract
 1. Introduction
  1.1 The Reason We Need Machine Learning for Securities Data Prediction
  1.2 Drawback of Securities Data Collection
  1.3. Solution of Securities Data Collection
 2. Securities Data Extraction Using API
  2.1. Data Extraction using API of Kiwoom Securities
  2.2. Difference Between Web Crawling and API
 3. Expected Effect
 4. Test and Result
 5. Conclusion
 References

저자정보

  • Seung Ho Lee Graduate School of HanSei University
  • Seung Jung Shin Dept. of IT convergence, Hansei University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.