earticle

논문검색

Research on Spatial Clustering Algorithm based on Data Mining

초록

영어

We extended the online learning strategy and scalable clustering technique to soft subspace clustering, and propose two online soft subspace clustering methods, OFWSC and OEWSC. The proposed evolving soft subspace clustering algorithms can not only reveal the important local subspace characteristics of high dimensional data, but also leverage on the effectiveness of online learning scheme, as well as the ability of scalable clustering methods for the large or streaming data. Furthermore, we apply our proposed algorithms to text clustering of information retrieval, gene expression data clustering, face image classification and the problem of predicting disulfide connectivity.

목차

Abstract
 1. Introduction
 2. Online Soft Subspace Clustering Algorithm
  2.1 Online Learning Strategy based on Competitive Learning Theory
  2.2 Online Fuzzy Weighted Soft Subspace Clustering
  2.2 Online Entropy Weighted Soft Subspace Clustering
 3 Experiment Design and Discussion
  3.1. Parameter Setting and Experimental Arrangement
  3.2. Evaluation Criteria
  3.3. Comparison of Online Soft Subspace Clustering Algorithms
 4 Conclusion
 References

저자정보

  • Runtao Lv Baotou light industry professional technology institute college of electronic commerce, Baotou, china
  • Jin Kao Zhao Baotou light industry professional technology institute college of electronic commerce, Baotou, china
  • Yu Li Baotou city bureau of education test center, Baotou, china

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.