earticle

논문검색

Probability Based Virtual Machines Placement for Green Data Center

초록

영어

Virtual Machine Placement (VMP) is regarded as an important criterion to improve resource utilization and reduce energy consumption for cloud data centers. The existing VMP schemes simply set the VM resource requirements fixed values and ignore their fluctuation characteristics. Assuming normal distribution resource requirements, we firstly present a model for data centers based on a more accurate energy consumption model for single machine. Then, an effective genetic algorithm is adopted to solve this model. In the algorithm, some important issues, such as the number of population, fitness function and calculating method of energy consumption are discussed. In the end, we validate our method by experiments.

목차

Abstract
 1. Introduction
 2. Energy Consumption Optimization Model for Data Center
  2.1. Energy Model of PM
  2.2 Energy Optimization Model for Data Center
 3. Genetic-Based Algorithm
  3.1 Genome Encoding
  3.2 Genetic Operators
  3.3 Fitness Function
 4. Experiments and Analysis
  4.1 Parameter Values and Experimental Environment
  4.2 Benefits from Probability Distribution
  4.3 Effectiveness of GA
 5. Conclusion
 References

저자정보

  • Ye Heng-zhou College of Electrical Engineering, Guangxi University, Nanning, China / College Of Information Science and Engineering , Guilin University Of Technology, Guilin, China
  • Li Tao-shen School of Information and Engineering, Guangxi University, Nanning

참고문헌

자료제공 : 네이버학술정보

    ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

    0개의 논문이 장바구니에 담겼습니다.