earticle

논문검색

Research on Apriori Algorithm Based on Mapreduce Model

원문정보

초록

영어

With manufacturing technology developing persistently, hardware manufacturing cost becomes lower and lower. More and more computers equipped with multiple CPUs and enormous data disk emerge. Existing programming modes make people unable to make effective use of growing computational resources. Hence cloud computing appears. With the utilization of Map Reduce parallelized model, existing computing and storage capabilities are effectively integrated and powerful distributed computing ability is provided. Firstly, transform Apriori algorithm to Map Reduce model; realize Apriori parallel transformation; then use the way of compressing original transaction sets to improve the performance of Apriori algorithm in Hadoop framework; lastly, Map Reduce-Apriori algorithm is realized which is highly scalable for running in cloud computing environment.

목차

Abstract
 1. Introduction
 2. Algorithm Analysis and Parallelization Transformation
 3. Data Initialization
 4. Iterative implementation
  4.1 Calculate Frequent Itemsets at the kth layer
  4.2. Calculate Candidate Itemsets at the (K+1) Th Layer
 5. Generation of Association Rules
 6. Experimental Analysis and Results
  6.1. Experimental Data Set
  6.2. Experimental Test Analysis
  6.3. Analysis of Data Mining Results
 7. Conclusion
 References

저자정보

  • Haili Xu Jiamusi College, Heilongjiang University of Chinese Medicine, China
  • Feng Qi Jiamusi College, Heilongjiang University of Chinese Medicine, China

참고문헌

자료제공 : 네이버학술정보

    ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

    0개의 논문이 장바구니에 담겼습니다.