earticle

논문검색

Research of Short-Term Load Forecasting Using DWT and LSSVM Optimized by QDE

원문정보

초록

영어

To evaluate short-term power load properly and efficiently, this paper proposes a modified DWT-QDE-LSSVM (Discrete wavelet transform (DWT) and least squares support vector machine (LSSVM) optimized by quantum differential evolution (QDE)) model combined with input selected. The load data series of the previous days are first decomposed into an approximation component and a detail component. Then LSSVM is built to model the approximation component and QDE algorithm is applied to overcome the problems faced by LSSVM in selecting parameters. In order to raise forecasting accuracy, this paper proposes the refinement of related factors. The empirical results show that the proposed DWT-QDE-LSSVM model is feasible and can satisfy the short-term load forecasting requirements in China.

목차

Abstract
 1. Introduction
 2. Methodology
  2.1. Discrete Wavelet Transform
  2.2. Least Squares Support Vector Machine
  2.3. Quantum Differential Evolution
 3. Approaches of DWT-QDE-LSSVM
 4. A Numeric Example and Results
  4.1. Data Preprocessing
  4.2. Selection of Input
  4.3. Statistic Measure to Determine the Accuracy of the Forecast
  4.4. DWT-QDE-LSSVM Results Analysis
  4.5. Comparative Analysis
 5. Conclusions
 References

저자정보

  • Wei Sun Department of Business Administration, North China Electric Power University, China
  • Jingyi Sun Department of Business Administration, North China Electric Power University, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.