earticle

논문검색

Nonlinear Approximate Indexing for Multimedia Data

초록

영어

This paper presents a new nonlinear approximate indexing method for high-dimensional data such as multimedia data. The new indexing method is designed for approximate similarity searches and all the work is performed in the transformed Gaussian space. In this indexing method, we first map the input space into a feature space via the Gaussian mapping, and then compute the top eigenvectors in the Gaussian space to capture the cluster structure based on the eigenvectors. We describe each cluster with a minimal hypersphere containing all objects in the cluster, derive the similarity measure for each cluster individually and construct a bitmap index for each cluster. Finally we transform the nearest neighbor query into the hyper-rectangular range query and search the clusters near the query point. The experimental results for our new indexing method show considerable effectiveness and efficiency.

목차

Abstract
 1. Introduction
 2. Nonlinear Similarity Model
 3. Clustering
 4. Local Similarity Measure
 5. Cluster Description
 6. Similarity Query Model
 7. Similarity Bitmap Indexing Method
  7.1. Index Creation
  7.2. Similarity Search
 8. Performance Experiments
 9. Conclusions
 References

저자정보

  • Guang-Ho Cha Seoul National University of Science and Technology

참고문헌

자료제공 : 네이버학술정보

    ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

    0개의 논문이 장바구니에 담겼습니다.