earticle

논문검색

Analysis of Audience Interest and User Clustering Based on Program Tags

초록

영어

This paper proposes an analysis method of user behavior to provide personalized program recommendation based on program tags in the field of broadcasting and television. Multidimensional Scaling Analysis is used to produce a quantitative description of viewing preferences. Hierarchical clustering is performed to determine the number of clusters, followed by K-means clustering to group the data according to audience interest in TV program tags. This divides the audience into groups with similar viewing preferences.

목차

Abstract
 1. Introduction
 2. Audience Interest based on Program Tags
  2.1. Delayering Tagging System of Television Programs
  2.2. Audience Interest of Program Tags
 3. Analysis of Audience Interest
  3.1. Personal Tag Cloud of Audience Interest
  3.2. Audience Multidimensional Scaling based on AIT
 4. Audience Crowd Clustering based on AIT
  4.1. Audience Clustering
  4.2. Hierarchical clustering of Audience Interest of TV Program Tags
  4.3. K-Means Clustering of Audience Interest of TV Program Tag
  4.4. Simulation and Performance Analysis
 5. Conclusion
 References

저자정보

  • Fulian Yin Faculty of science and technology, Communication University of China, Beijing, China
  • Xingyi Pan Faculty of science and technology, Communication University of China, Beijing, China
  • Jianping Chai Faculty of science and technology, Communication University of China, Beijing, China
  • Wenwen Zhang Beijing Aerospace System Engineering Institute, Beijing, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.