earticle

논문검색

A Survey of Loop Parallelization: Models, Approaches, and Recent Developments

초록

영어

In cloud computing era, automatic parallelization is still significant for virtualization platform. However, after several decades of development, the overall effect is still to be improved. Summary of the mainstream technology developments will be beneficial to reveal the future direction and trend. This paper reviews the technology of loop parallelization, which is the key issue in automatic parallelization. After introducing the basic models and approaches, we focus on the recent developments, on which we obtain the trend of this field and the conclusions about future.

목차

Abstract
 1. Introduction
 2. Polyhedral Model and Affine Transformations
  2.1 Data Dependence Analysis
  2.3. Loop Transformation
  2.4. Code Generation
 3. Graph Theory Based Models and Partitions
 4. Semantics, Stencil and High Level Abstract
 5. Dynamic Analysis and Scheduling
  5.1. The Use of Compile Time Information
  5.2. The Dynamic Scheduling
  5.3. Pipeline Parallelization
  5.4. Speculative Parallelization
 6. Intelligent Algorithms
 7. Conclusion and Future Trend
 References

저자정보

  • Hong Yao School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
  • Huifang Deng School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
  • Caifeng Zou School of Computer Science and Engineering, South China University of Technology, Guangzhou, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.