earticle

논문검색

Fuzzy Partition based Similarity Measure for Spectral Clustering

초록

영어

The efficiency of spectral clustering depends heavily on the similarity measure adopted. A widely used similarity measure is the Gaussian kernel function where Euclidean distance is used. Unfortunately, the result of spectral clustering is very sensitive to the scaling parameter and the Euclidean distance is usually not suitable to the complex distribution data. In this paper, a spectral clustering algorithm based on fuzzy partition similarity measure ( FPSC) is presented to solve the problem that result of spectral clustering is very sensitive to scaling parameter. The proposed algorithm is steady extremely and hardly affected by the scaling parameter. Experiments on three benchmark datasets, two synthetic texture images are made, and the results demonstrate the effectiveness of the proposed algorithm.

목차

Abstract
 1. Introduction
 2. Spectral Clustering Algorithm and the NJW Method
 3. The Proposed FPSC Method
  3.1. Kernel Fuzzy C-Means Clustering (KFCM)
  3.2. Kernel Fuzzy Similarity Measure
  3.3. FPSC Method for Texture Image Segmentation
 4. Experimental Results and Analysis
  4.1. Experiments on Three Benchmark Synthetic Datasets
  4.2. Sensitivity Analysis of Parameters
  4.3. Experiments on two Textures Images
 5. Conclusion
 References

저자정보

  • Yifang Yang College of Science, Xi’an Shiyou University, Xi’an, China
  • Yuping Wang School of Computer Science and Technology, Xidian University, Xi’an, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.