earticle

논문검색

Facial Expression Recognition Model Based on Computer Vision

초록

영어

A new facial feature position self-calibration method based on active computer vision is proposed in this paper to realize facial expression recognition. Compared with traditional method, the proposed method based on the extension focus thought only needs four linearly independent translational movements, one real rotational movement and one virtual rotational movement rather than the calibration reference object to realize the linear solutions orderly for internal reference matrix of camera, hand-eye relationship and feature point target depth. The experiment result shows that the proposed method is feasible and effective and the measurement errors of two-dimensional and three-dimensional feature points can be below 0.40mm, thus able to meet the industrial accuracy requirements.

목차

Abstract
 1. Introduction
 2. Calibration Principle
  2.1. Internal Reference Matrix of Camera
  2.2. Coordinate Relationship Transforamtion
  2.3. Extebsuib Focus
 3. Calibration of Hand-Eye Relationship Rotation Matrix
 4. Calibration of Internal Parameter Matrix of Camera
 5. Calibration of Feature Point target Depth
 6. Calibration of Facial Feature Relationship Translation Vector
 7. Simulation Experiment
  7.1. Simulation Environment and Data Source
  7.2. Result and Analysis
 References

저자정보

  • Chen Chao Department of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
  • Huang Linlin Department of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.