earticle

논문검색

Influence Maximization Social Networks Hybrid Algorithm Based on Linear Threshold Model

초록

영어

Aiming at the problems such as the HIM algorithm has a very high time complexity and cannot be applied in the large social networks and so on, and this paper puts forward the hybrid influence maximization algorithm. The algorithm carries out the detailed experiments on 6 real data sets with different characteristics. The experiments show that compared with the HIM algorithm, the algorithm in this paper has great improvement in the scope of influence.

목차

Abstract
 1. Introduction
 2. Influence Maximization
 3. Hybrid Algorithm for Influence Maximization
  3.1. Presentation of Framework and the HPG Algorithm
  3.2. Improvement of the uv u Estimation Formula
  3.3. Time Complexity Analysis of HIM Algorithm and HPG Algorithm
 4. Experimental Simulation and Analysis
  4.1. Experimental Data
  4.2. Experimental Environment
  4.3. Results Analysis
 5. Conclusion
 References

저자정보

  • Dou Ruofei College of Computer Science and Information Engineering Tianjin University of Science & Technology, Tianjin, China

참고문헌

    ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

    0개의 논문이 장바구니에 담겼습니다.