earticle

논문검색

Class Incremental ELM and Application for Image Recognition

초록

영어

In image recognition field, the fact is that the trained image classifier can not recognize the images, whose class type is not the same as the training data. To resolve this problem, a new image classifier is proposed, which is based on the class incremental extreme learning machine. The new classifier can recognize the normal images well, label them with new labels, and update itself with the new labeled data. Tested on the real-world daily activity data set, the results show that our algorithm performs well.

목차

Abstract
 1. Problem Description
 2. Relevant Work
 3. Image Classification Technique Based on Class-Incremental Learning
  3.1. Framework of the Algorithm
  3.2. ELM Model with Recognition Capacity for Suspected Abnormal Images
  3.3. Identification and Labeling of Samples of New Image Classes
  3.4. Transfer and Updating of ELM Model
 4. Experiment and Result Analysis
  4.1. Data Preparation
  4.2. Algorithm Performance Evaluation
 5. Summary
 Acknowledgment
 References

저자정보

  • Wei Tao China National Digital Switching System Engineering&Technological R&D Center, Zhengzhou City, Henan Province, Computer College, Henan institute of engineering, Zhengzhou City, Henan Province, China
  • Ji Xin-Sheng Computer College, Henan institute of engineering, Zhengzhou City, Henan Province, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.