earticle

논문검색

Research of Sentiment Classification for Tibetan Texts by Supervised Learning

초록

영어

Increasing number of subjective text appears on the internet which contains a lot of information. In this paper, we study how to apply supervised learning techniques to solve sentiment classification problems. Using the Tibetan news as data, we find that standard supervised learning techniques definitively outperform human-produced baselines. Moreover, we find that selecting the words with words with polarity as feature, the special syntactic structure such as exclamation sentence pattern, etc. as feature can improve the performance of sentiment classification. Conclusively, the research of sentiment analysis is a more challenging problem.

목차

Abstract
 1. Introduction
 2. Related Work
  2.1. The Supervised Learning Method
  2.2. The Unsupervised Learning Method
 3. Classification Algorithm
  3.1. Naïve Bayes
  3.2. Maximum Entropy
 4. The Method of Generating Tibetan Text Feature
  4.1. The Classification Model
  4.3. The Experimental Data
  4.4. The Experiments
 5. Experimental Results and Analysis
 Acknowledgement
 References

저자정보

  • Lirong Qiu Department of Information Technology, Minzu University of China, Beijing
  • Zhen Zhang Department of Information Technology, Minzu University of China, Beijing

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.