earticle

논문검색

Fault Analysis for Power Network Equipment Based On Association Rule Clustering Algorithm

초록

영어

In order to improve the fault positioning accuracy of distributed generation power distribution network, it puts forward fault positioning method of distribution network equipment based on blended data association rule data mining method. Based on fuzzy rough set theory, it studies classification rule mining method on hybrid data, through the introduction of the rule to obtain the a generalized threshold of the algorithm, and control the scale and complexity of the obtained rule set, so as to improve the classification efficiency of rough set method of knowledge discovery on the failure data and get the fault positioning feature of distribution network, finally adopts the support vector machine (SVM) to make fault classification, and tests the performance of the algorithm with simulation experiment. The simulation results show that, this paper can be quickly and accurately to locate fault power section, and the fault positioning accuracy is higher than other fault positioning methods of distribution network.

목차

Abstract
 1. Introduction
 2. LERS Rule Mining System Based on Rough Set
  2.1. Rough Set Rule Mining Model
  2.2. Measurement of Classification Rule
 3. Rule Mining Algorithm of Blended Data of Fault Diagnosis on PowerNetwork Equipment
  3.1. Rule Mining Model Based on Fuzzy Rough Set
  3.2. Rule Mining Algorithm of Fuzzy Rough Set on Blended Data
 4. Simulation Experiment
  4.1. Simulation Environment
  4.2. Result Analysis
  4.3. Performance Comparison with Other Fault Positioning Method of PowerDistribution Network
 5. Conclusion
 References

저자정보

  • Zhang Hu Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou 510000,Guangdong Province, China
  • Li Feng Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou 510000,Guangdong Province, China
  • Wang Hongbin Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou 510000,Guangdong Province, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.