earticle

논문검색

Query Categorization from Web Search Logs Using Machine Learning Algorithms

초록

영어

This paper presents a data-driven methodology to disambiguate a query by suggesting relevant subcategories within a specific domain. This is achieved by finding correlations between the user’s search history and the context of the current search keyword. We apply automatic categorization on each query to identify a list of categories which can describe the query given. To predict the categories of a user input query, we employed machine learning algorithms. We present the preliminary evaluation results and conclude with future work.

목차

Abstract
 1. Introduction
 2. Our Approach
  2.1. Data Pre-processing
  2.2. Categorization
  2.3. Data Preparation
  2.4. Categorization Learning
 3. Evaluation
  3.1. Results
  3.2. Discussions
 4. Conclusion
 Acknowledgement
 References

저자정보

  • Christian Højgaard Pentia A/S, Copenhagen, Denmark
  • Joachim Sejr Schultz A/S, Valby, Denmark
  • Yun-Gyung Cheong Sungkyunkwan University, Suwon, South Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.