earticle

논문검색

Weighted Content Feature Text Recognition Algorithm Research

원문정보

초록

영어

Text data classification and retrieval is an important field of artificial intelligence, but because of the different characteristics and different language syntax, classification and retrieval also will be different; classification and identification retrieval traditional text data, using training data and segmentation the algorithm does not consider the specific locale, it is often an error. To solve this problem, we propose a weighted feature-based classification method, according to this method, the text data can be quickly and accurately classify; experiments show that the proposed algorithm can effectively improve the accuracy and speed of classification and retrieval.

목차

Abstract
 1. Introduction 
 2. Related Works
  2.1. Text Categorization
  2.2. Weighting
 3. Feature Weighting Classification Algorithms
  3.1. Feature Dimension Reduction Algorithm
  3.2. Text Classification Algorithm 
 4. Experiment and Result Analysis 
  4.1. Word Frequency Combined 
  4.2. Word Relevance Computation and Data Noise Reduction
  4.3. The Experiment Design and Analysis 
 5. Conclusion
 References

저자정보

  • Zhou Chengyi University of Science and Technology Liaoning, Anshan, Liaoning, China

참고문헌

자료제공 : 네이버학술정보

    ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

    0개의 논문이 장바구니에 담겼습니다.